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Destroying P-points efficiently

This section will be present a method, due to Chodounský and
Guzman [1], but following an alternate, streamlined proof due, in
addition, to Verner. While very elegant and relatively
straightforward, it seems to be very specific and has not leant itself
to modifications, leaving open several questions.
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Definition 1

SI denotes Silver forcing and consists of all partial functions
f : ω → 2 such that domain(f ) is co-infinite. The ordering on SI is
inclusion. Given a set of ordinals X define

SIX =
{
F ∈ SIX | | {ξ ∈ X | F (ξ) 6= ∅} | ≤ ℵ0

}
to be the countable support product of SI with the coordinate-wise
inclusion ordering. For F ∈ SIX define the support of F to be
{ξ ∈ X | F (ξ) 6= ∅}. If G ⊆ SIX is generic and ξ ∈ X let the ξth

Silver real be denoted by Ṡξ =
⋃

F∈G F (ξ).
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Definition 2

Given f ∈ SI such that f −1{1} is infinite and j ∈ ω define
Ij(f ) =

{
k ∈ ω

∣∣ j ≤ |f −1{1} ∩ k | < j + 1
}

. For J ∈ 2 define

DJ(f ) =
⋃
n∈ω

I2n+J(f )

and let this definition also apply to total functions f : ω → 2.

If f −1{1} is finite then some Ij(f ) will not be defined, but this will
not play a role since the set of f ∈ SI such that f −1{1} is infinite
is dense.

Juris Steprāns P-points



Juris Steprāns P-points



Key ideas of the proof

The key observation is that for any G ⊆ SIω generic over V ,
any ultrafilter U from V and J ∈ 2 there is some U ∈ U that
is disjoint from any pseudo-intersection of the sets
{DJ(Ṡn)}n∈ω.

In the model obtained by forcing with SIω2 over a model of
the Continuum Hypothesis, for every ultrafilter U in the
ground model there is a countable B ⊆ ω2 from the ground
model and some J ∈ 2 such that DJ(Ṡξ) ∈ U for each ξ ∈ B.

One might hope that the final step would be to show that if U
is an arbitrary ultrafilter in a generic extension by G ⊆ SIω2

then there is a set X ∈ [ω2]ℵ1 such that U ∩ V [G ∩ SIX ] is an
ultrafilter and that G ∩ SIω2\X is generic over G ∩ SIX .

However, this makes no sense since the forcing is a product
rather than an iteration.
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In the following lemma note that A is a set, not a name.

Lemma 1

Let P be a partial order such that P× SIω is ωω-bounding.
Suppose further that U̇ is a P× SIω-name for an ultrafilter such
that for each A ⊆ ω the set EA(U̇) defined to be{

p ∈ P
∣∣∣ (p,∅) P×SIω “A ∈ U̇” or (p,∅) P×SIω “A /∈ U̇”

}
(1)

is dense in P. Then for each J ∈ 2

1 P×SIω “(∀X ⊆ ω)(∃U ∈ U̇) either

(∃n ∈ ω) |X \ DJ(Ṡn)| = ℵ0 or |X ∩ U| < ℵ0.” (2)
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Proof.

Let Ż be a P× SIω name such that

1 P×SIω “(∀n ∈ ω) Ż ⊆∗ DJ(Ṡn)”.

Since P× SIω is ωω-bounding it is possible to partition ω into
intervals {Nk}k∈ω such that for some (p, f ) ∈ P× SIω:

(p, f ) P×SIω “Ż \max(Nn) ⊆ DJ(Ṡn)” for each n ∈ ω
Nn \ domain(f (i)) 6= ∅ for each i ≤ n.

It may be assumed that Ū =
⋃

n∈ω N2n+1 ∈ U . The goal now is to
find a condition (q, h) ≤ (p, f ) such that
(q, h) P×SIω “|Ż ∩ Ū| < ℵ0”. As a first step, find g ⊇ f such that
for every n ∈ ω there is some wn ∈ N2n such that⋃2n+1

`=0 N` ⊆ domain(g(n)) ∪ {wn}
wn /∈ domain(g(n)).

Now define Hn = N2n+1 ∩ DJ(g(n)).
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Juris Steprāns P-points



Proof continued.

Since the wn are in the domains of different coordinates of g it is
possible to extend g to ḡ so that ḡ(n)(wn) takes on any value
desired. In particular,

if ḡ(n)(wn) = 0 then ḡ SIω “N2n+1 ∩ DJ(Ṡn) = Hn”

while

if ḡ(n)(wn) = 1 then ḡ SIω “N2n+1 \ DJ(Ṡn) = Hn”.

Define H =
⋃

n∈ω Hn, noting that H ⊆ Ū. A modification to be

made to Ū will depend on whether H is forced to belong to U̇ or
not. Noting that H belongs to the ground model, let q ≤ p belong
to EH(U̇).
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Proof continued.

If (q,∅) P×SIω “H /∈ U̇” then let U = Ū \ H ∈ U . In this case let
h ⊇ g be such that h(n)(wn) = 0 for every n ∈ ω. We know that

h SIω “U ∩ N2n+1 ∩ DJ(Ṡn) = U ∩ Hn = ∅”.

Since (q, h) P×SIω “Ż ∩ N2n+1 ⊆ Ż \max(Nn) ⊆ DJ(Ṡn)” it
follows that (q, h) P×SIω “U ∩ N2n+1 ∩ Ż = ∅”.

Since U ⊆ Ū =
⋃

n N2n+1 it follows that

(q, h) P×SIω “U ∩ Ż ⊆
⋃
n∈ω

U ∩ N2n+1 ∩ Ż = ∅”.
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Completion of proof.

On the other hand, if (q,∅) P×SIω “H ∈ U̇” then let U = H. In
this case let h ⊇ g be such that h(n)(wn) = 1 for every n ∈ ω.

It now also follows that h SIω “DJ(Ṡn) ∩ Hn = ∅”. Since

(q, h) P×SIω “Ż ∩ N2n+1 ⊆ DJ(Ṡn)”

it again follows that (q, h) P×SIω “Hn ∩ Ż = ∅” and, hence, that

(q, h) P×SIω “U ∩ Ż = H ∩ Ż = ∅”

as required.
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Lemma 2

If 2ℵ0 = ℵ1 then for any Y ⊆ SIω2 such that |Y | = ℵ2 there is
Ȳ ∈ [Y ]ℵ2 such that for any B ∈ [Ȳ ]ℵ0 there is q ∈ SIω2 such that
q ⊇

⋃
B.

Proof.

Use a ∆-system argument and the hypothesis 2ℵ0 = ℵ1.
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Lemma 3

If 2ℵ0 = ℵ1 and 1 SIω2 “U̇ is an ultrafilter” then there is a dense
set of f ∈ SIω2 for which there is a countable B ⊆ ω2 and J ∈ 2
such that

f SIω2 “DJ(Ṡβ) ∈ U̇” for all β ∈ B

the set EA(U̇) of (1) is dense in SIω2\B for each A ⊆ ω.

Recall that EA(U̇) is defined to be{
p ∈ P

∣∣∣ (p,∅) P×SIω “A ∈ U̇” or (p,∅) P×SIω “A /∈ U̇”
}
(3)

and note that P is SIω2\B in this case.
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Proof.

Let g ∈ SIω2 be given. From Lemma 2 it follows that SIω2 satisfies
the ℵ2-chain condition. Since 2ℵ0 = ℵ1 it is possible to find
E ⊆ SIω2 such that |E | = ℵ1 and such that EA(U̇) ∩ E is dense in
SIω2 for each A ⊆ ω. Let X ∈ [ω2]ℵ1 be so large that it contains
the support of all f ∈ E .

For each ξ ∈ ω2 choose some fξ ∈ SIω2 and Jξ ∈ 2 such that
fξ ⊇ g and fξ SIω2 “DJξ(Ṡξ) ∈ U̇”. Using Lemma 2 find

Λ ∈ [ω2]ℵ2 such that
⋃
ξ∈B fξ ∈ SIω2 for each B ∈ [Λ]ℵ0 . Let J ∈ 2

be such that if Λ∗ = {λ ∈ Λ | Jλ = J } then |Λ∗| = ℵ2. Let
B ∈ [Λ∗ \ X ]ℵ0 and define f =

⋃
ξ∈B fξ.
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Theorem 1

If 2ℵ0 = ℵ1 and G ⊆ SIω2 is generic over V then V [G ] is a model
of set theory with no P-points.

Proof.

If U̇ is a SIω2 name for an ultrafilter then by the Lemma 3 there is
some f ∈ G and a countable B ⊆ ω2 and J ∈ 2 such that

f SIω2 “DJ(Ṡβ) ∈ U̇” for all β ∈ B

the set EA(U̇) of (1) is dense in SIω2\B for each A ⊆ ω.

Then by Conclusion (2) of Lemma 1, with P taken to be SIω2\B , it
follows that

f SIω2\B×SIB “(∀U ∈ U̇)(∃n ∈ ω) |X \ DJ(Ṡn)| = ℵ0”

and, since SIω2\B × SIB = SIω2 , the result follows.
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Questions

Definition 3

A measure m satisfies Property AP if for every pairwise disjoint
sequence {An} there is A ⊆ ω such that An ⊆∗ A for all n and
m(A) =

∑
n m(An).

An ultrafilter with Property AP is clearly a P-point. Mekler shows
in [2] that it is consistent that there are no finitely additive
measures with Property AP, thus strengthening Shelah’s
consistency that there are no P-points. Borodulin-Nadzieja,
Cancino and Morawski that the existence of a measure with AP
does not imply the existence of a P-point. However,

Question 1

Are there ultrafilters with Property AP in the Silver model?
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Questions

The next part of this lecture will look at a model of Shelah [3] in
which there are no Nowhere Dense (NWD) ultrafilters.

Definition 4

Recall from the first lecture that if I is an ideal on X then U is an
I-ultrafilter if for every F : ω → X there is A ∈ I such that
F−1(A) ∈ U .

Recall also from the first lecture that every P-point is a NWD
ultrafilter, so this is a strengthening of having no P-points. So it
begs the following question.

Question 2

Are there NWD-ultrafilters in the Silver model?
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Destroying more than just P-points

Definition 5

A partial order P will be said to have the weak Sacks property if for
every g : ω → ω such that limn→∞ g(n) =∞ and every
p P “ḟ : ω → ω” there are infinite A ⊆ ω, F : A→ [ω]<ℵ0 and
q ≤ p such that:

|F (n)| ≤ g(n) for all n ∈ A

q P “(∀n ∈ A) ḟ (n) ∈ F (n)”.

Lemma 4

If P has the weak Sacks property and

1 P “Q has the weak Sacks property”

then P ∗Q has the weak Sacks property.
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The proof of Lemma 4 is technical and not sufficiently enlightening
to be worth reproducing here.

The following can be proved using ideas familiar from the iteration
theory of proper partial orders, in particular, the preservation of
ωω-bounding forcing by countable support.

Lemma 5

If α is an ordinal and P is the countable support iteration of proper
partial orders Pξ for ξ ∈ α and if each Pξ has the weak Sacks
Property then so does P.
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Definition 6

If I is an ideal define P(I) to consist of all functions σ defined on
ω such that there is d : ω → ω satisfying that for each n ∈ ω

σ(n) : [d(n), n)→ 2

d−1(k) ∈ I for each k ∈ ω.

For σ ∈ P(I) let dσ denote the function witnessing that σ ∈ P(I).
For σ and τ in P(I) define σ ≤ τ if

1 σ(n) ⊇ τ(n) for all n

2 there is e : ω → ω such that e(n) ≤ n and dσ(n) = e ◦ dτ (n)
for all n

3 if dτ (n) = dτ (m) and dσ(n) ≤ i < dτ (n) then
σ(n)(i) = σ(m)(i).

If G ⊆ P(I) is generic define sGn =
⋃
σ∈G σ(n).
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Lemma 6

P(I) is a partial order.

Proof.

It only needs to be verified that P(I) is transitive, so suppose that
σ ≤ τ ≤ θ. Then there are e and ē such that dτ = e ◦ dθ and
dσ = ē ◦ dτ . Then ē ◦ e satisfies Condition (2) required for σ ≤ θ.

To see that Condition (3) holds suppose that dθ(n) = dθ(m) and
dσ(n) ≤ i < dθ(n). Then note that dσ(n) ≤ dτ (n) ≤ dτ (n) and so
either dσ(n) ≤ i < dτ (n) or dτ (n) ≤ i < dθ(n). If the first case
holds note that dτ (n) = e(dθ(n)) = e(dθ(m)) = dτ (m) and so
σ(n)(i) = σ(m)(i) because σ ≤ τ . In the second case use that
τ ≤ θ.
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Definition 7

For σ and τ in P(I) define σ ≤n τ if d−1σ {i} = d−1τ {i} for all i ∈ n
in the range of dτ .

It is easy to see that the set of σ ∈ P(I) such that the range of dσ
is ω is dense. While this is not essential, it is worth keeping in mind
since it simplifies, somewhat, the following technical definition.
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Definition 8

For σ ∈ P(I), S ∈ [ω]<ℵ0 and g ∈
∏

j∈S 2j define σ[g ] by

σ[g ](`) =

{
σ(`) if dσ(`) /∈ S

g(dσ(`)) ∪ σ(`) if dσ(`) ∈ S .

If S ⊆ ω and ~g is defined on
⋃

n∈S d
−1
σ (n) and ~g(i) ∈ 2n whenever

dσ(i) = n ∈ S then let σ[~g ] be defined by

σ[~g ](`) =

{
σ(`) if dσ(`) /∈ S

~g(`) ∪ σ(`) if dσ(`) ∈ S .

Juris Steprāns P-points
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While the following lemma concluding that σ[g ] ≤ σ is immediate,
it may not be the case that σ[~g ] ≤ σ because Condition (3) of
Definition 6 may fail. When it is necessary to use S in the context
of Definition 8 it will usually be a singleton, but there is a crucial
point, Corollary 1, at which an infinite S will be needed.

Lemma 7

If σ ∈ P(I) and n ∈ ω and g ∈
∏

j∈n 2j then σ[g ] ≤ σ.
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Lemma 8

If τ ∈ P(I) and n ∈ ω are such that there are

~gi : d−1τ (i)→ 2dτ (i) for each i ∈ n

a dense set D ⊆ P(I)

then there are σ ≤n τ and ~gn : d−1τ (n)→ 2dτ (n) and W ⊆ D such

that |W | < 2n
2

and such that for each S ⊆ n if σS = σ
[⋃

j∈S ~gj

]
then σS [~gn] ≤ σS and W is predense below each σS .

Note that it is not being claimed that σS ≤ σ.
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Proof Jump to Lemma 9 Jump to Theorem.

Let {Sj}j∈2n enumerate all the subsets of n and let {hjk}
m(j)
k=0

enumerate
∏
`∈n\Sj 2` and note that it can assumed that∑

`∈2n m(`) < 2n
2
. Construct inductively conditions τ `k for ` ∈ 2n

such that:

τ00 = τ

τ `+1
0 = τ `m(`)

τ `k+1[h`k ∪
⋃

m∈S` ~gm] ≤ τ `k [
⋃

m∈S` ~gm] and, hence, τ `k+1 ≤ τ `k
d−1
τ`k
{j} = d−1τ {j} if j ∈ n is in the range of dτ

τ `k+1[hk ∪
⋃

m∈S` ~gm] ∈ D.
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Continuation of proof of Lemma 8.

This is a standard argument, at least for each ` individually, but it
is worth repeating in this context. Given τ `k let
τ̄ `k ≤ τ `k [h`k ∪

⋃
m∈S` ~gm] be such that τ̄ `k ∈ D. Then let τ `k+1 be

defined by

τ `k+1(j) =

{
τ̄ `k(j) if dτ (j) /∈ n

τ(j) otherwise

and note that τ̄ `k(j) � [dτ (j), j) = τ(j) if dτ (j) ∈ n. Keep in mind
that it is not being claimed that τ `k [h`k ∪

⋃
m∈S` ~gm] ≤ τ `k .

However, since τ `k [h`k ∪
⋃

m∈S` ~gm] is, nevertheless, an element of

P(I) there is no problem in finding τ̄ `k .
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Continuation of proof of Lemma 8.

Then extend τ2
n−1

m(2n−1) to τ∗ so that if dτ (j) /∈ n and dτ∗{j} ∈ n

then dτ∗{j} = 0. If follows that d−1τ∗ {j} = d−1τ {j} if 0 < j < n and
j is in the range of dτ , but some more work is needed to get a
condition σ such that σ ≤n τ .

To this end, let e be such that dτ∗ = e ◦ dτ and define ẽ by

ẽ(j) =

{
n if e(j) = 0 & dτ (j) 6= 0

j otherwise.

It is easy to verify that ẽ(j) ≤ j for all j . Moreover, if dσ = ẽ ◦ dτ∗
then d−1σ {j} = d−1τ∗ {j} ∈ I if j 6= n and

d−1σ {n} ⊆ d−1τ∗ (0) ∪ d−1τ∗ {n} ∈ I.

Juris Steprāns P-points



Continuation of proof of Lemma 8.

Therefore, if σ is defined by setting dσ = ẽ ◦ dτ∗ and letting

σ(j) =

{
τ∗(j) if ẽ(j) 6= n

τ∗(j) � [n, j) if ẽ(j) = n

it follows that σ ∈ P(I).
Let ~gn(i) = τ∗(i) � n for each i ∈ d−1τ∗ {0} \ d−1τ {0}. It follows that
σ[~gn] = τ∗ and, furthermore, σ ≤n τ .
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Continuation of proof of Lemma 8.

Moreover, if S ⊆ n and S = S` then {τ `k}
m(`)
k=0 is predense below

τ `m(`)

[⋃
m∈S` ~gm

]
and, since

σ

~gn ∪ ⋃
m∈S`

~gm

 = σ

 ⋃
m∈S`

~gm

 [~gn]

= τ∗

 ⋃
m∈S`

~gm

 ≤ τ `m(`)

 ⋃
m∈S`

~gm

 (4)

it follows that the conclusion holds with
W =

{
τ `k | ` ∈ 2n & k ∈ m(`)

}
.
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Lemma 9

If {σn}n∈ω ⊆ P(I) and σn+1 ≤n σn for each n ∈ ω then
σ =

⋃
n∈ω σn ∈ P(I).

Proof.

Note that {d−1σn+1
{n}}n∈ω are pairwise disjoint and, since

n ⊆
⋃
k∈n

d−1σn+1
{k}

it follows that
⋃

n∈ω d
−1
σn+1
{n} = ω. Hence, if dσ is defined by

dσ(j) = dσn+1{n} if and only dσn+1(j) = dσn+1(n) then dσ witnesses
that Definition 6 is satisfied by σ.
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Lemma 10

If τ ∈ P(I) and Dn ⊆ P(I) are dense for n ∈ ω then there is σ ≤ τ
such that for each j > 0 there is ~gj : d−1σ {j} → 2j and a finite set

Wj ⊆ Dj such that |Wj | < 2j
2

and for any S ⊆ j if
σS = σ

[⋃
i∈S ~gi

]
then σS [~gj ] ≤ σS and Wj is predense below each

σS .

Proof.

This follows directly from Lemma 8 and Lemma 9
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Definition 9

Define an ideal I to be very tall if for every partition ω =
⋃

n∈ω An

such that An ∈ I for each n there is an infinite Z ⊆ ω such that⋃
n∈Z An ∈ I.

Corollary 1

If I is very tall then P(I) has the weak Sacks property.
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Proof.

Suppose that τ P(U) “ḟ : ω → ω” and limn→∞ g(n) =∞. Let kn

be so large that g(kn) > 2n
2

and let Ḟ (n) = ḟ (kn) and let Dn be
the dense set of conditions deciding the value of Ḟ (n). Let σ∗ ≤ τ
satisfy the conclusion of Lemma 10 for {Dj}j∈ω and let ~gj be the
functions guaranteed by that lemma. Since the d−1σ∗ {j} are
pairwise disjoint and I is very tall, it is possible to find an infinite
Z ⊆ ω such that ⋃

j∈Z
d−1σ∗ {j} ∈ I.

Let ~g =
⋃

i∈Z ~gi and define σ = σ∗[~g ] and X = {kn}n∈Z . Then

σ = σ∗[~g ] P(U) “ḟ (kn) = Ḟ (n) ∈Wn”

for each kn ∈ X and some set Wn such that |Wn| ≤ 2n
2
< g(kn) as

required.
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Corollary 2

P(I) is proper.

Proof.

Let M be an elementary submodel of H(κ) such that I ∈M and
let τ ∈M ∩ P(I). Let {Dn}n∈ω enumerate all the dense subsets of
P(I) in M and assume that Dn+1 ⊆ Dn. Then use Lemma 10 as
in Corollary 1 to find σ ≤ τ such that for infinitely many j there is
a finite set Wj ⊆ Dj such that and Wj is predense below each σ. It
has to be noted that, since the argument of Corollary 1 can be
carried out in M, it follows that the Wj can be assumed to be
subsets of M. Therefore σ is M generic.
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Lemma 11

A set Z ⊆ 2ω is nowhere dense if and only if there are tn : Dn → 2
such that:

Dn is a finite interval in ω

max(Dn) < min(Dn+1)

if z ∈ Z then tn 6⊆ z for all n ∈ ω.

Proof.

Well known and easy.

Juris Steprāns P-points



Lemma 12

If P has the weak Sacks property and
1 P “Ż ⊆ 2ω is nowhere dense ” then there is p ∈ P, an infinite
set X ⊆ ω and tn : [n,Dn)→ 2 such that:

p P “(∀z ∈ Ż )(∀n ∈ X ) tn 6⊆ z”.

Proof Jump to Theorem.

Using Lemma 11 let ṡn be P-names such that

1 P “(∀n ∈ ω) ṡn : Ėn → 2”

1 P “(∀n ∈ ω) max(Ėn) < min(Ėn+1)”

1 P “(∀z ∈ Ż )(∀n ∈ ω) ṡn 6⊆ z”.
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Continuation of proof of Lemma 11.

Let ẇn = {ṡj}n+n
j=n and use the weak Sacks property of P to find

p ∈ P, and infinite X ⊆ ω and Wn for n ∈ X such that
p P “(∀n ∈ ω) ẇn ∈Wn” and |Wn| = n.

An easy inductive argument shows that for each n ∈ X there is
some Dn and tn : [n,Dn)→ 2 such that for each {vj}n+n

j=n ∈Wn

there is some j such that n ≤ j < n + n and vj ⊆ tn. It follows that
{tn}n∈X provides the desired sequence.
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Theorem 2

If I is very tall and Ḟ is any P(I)-name such that

∅ P(I) “Ḟ : ω → 2ω & (∀n ∈ ω) sGn ⊆ Ḟ (n)”

and 1 P(I) “Q has the weak Sacks property” then for any (τ, p)
such that

(τ, p) P(I)∗Q “Ż ⊆ 2ω is nowhere dense.”

Then there are (σ, q) ≤ (τ, p) and U ∈ I∗ such that
(σ, q) P(I)∗Q “Ḟ (U) ∩ Ż = ∅”.
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Proof.

Use Lemma 4, Lemma 12 and Corollary 1 to find (τ∗, q) ≤ (τ, p),
tn : [n,Dn)→ 2 and an infinite set X ⊆ ω such that

(τ∗, q) P(I)∗Q “(∀z ∈ Ż )(∀n ∈ X ) tn 6⊆ z”.

Let {xn}n∈ω enumerate X in increasing order and, by choosing an
infinite subset of X , it can be assumed that Dxi < xi+1.
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Continuation of proof.

Then define the function e by

e(n) =

{
n if n < Dx0

xi if Dxi ≤ n < Dxi+1

and define σ by

σ(n) =

{
τ∗(n) if n < Dx0

txi ∪ τ∗(n) if Dxi ≤ n < Dxi+1 .

A key point to notice here is that Condition 3 of Definition 6 is
satisfied and so σ ≤ τ∗. Let U = ω \

⋃
j∈Dx0

d−1τ∗ {j} and note that

U ∈ I∗ and

(σ, q) P(I)∗Q “(∀n ∈ U)(∃m ∈ X ) tm ⊆ Ḟ (n)”

as required.
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Corollary 3

It is consistent that there are no nowhere dense ultrafilters; indeed
no nowhere dense very tall filters .

Proof.

Let V be a model of set theory such that ♦ω2 holds and this is
witnessed by {Dα}α∈ω2 . Construct a countable support iteration
{Pα}α∈ω2 such that for each α ∈ ω2 if Dα is a Pα name such that
1 Pα “D∗α is an ultrafilter” then Pα+1 = Pα ∗ P(Dα). Since the
iteration is proper it follows that if U̇ is a Pω2 name for an
ultrafilter then there is α ∈ ω2 such that for any generic G ⊆ Pω2

the interpretation of D∗α in V [G ∩ Pα] is equal to the interpretation
of U̇ in V [G ∩ Pα].
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Continuation of proof.

Since the ideals dual to an ultrafilter are easily seen to be very tall,
it follows from Lemma 5 that in the model V [G ∩ Pα]

1 P(Dα) “Pω2/Pα+1 has the weak Sacks property.”

It follows from Theorem 2 and Lemma 12 that there is a Pα-name
for function F : ω → 2ω such that if F (U) is nowhere dense then
U ∈ U∗.

This proof actually shows that there are no very tall, NWD ideals.
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Question

Shelah has shown that ultrafilters with some properties, such a
Property M, are NWD-utrafilters and so do exist in the model of
Corollary 3. On the other hand, letting B be the ideal on
⊕n∈ω{n} × n defined by

B = {X ⊆ ⊕n∈ω{n} × n | (∃k ∈ ω)(∀m ∈ ω) |X ∩ {m} ×m| < k }

it is consistent with set theory that there is a B-ultrafilter, but
there are no nowhere dense ultrafilters.

Question 3

Determine for which other ideals I there are, or are not,
I-ultrafilters in the model of Corollary 3?

(U has Property M if for all δ > 0 and {Xn}n such that
λ(Xn) > δ there is A ∈ U such that λ(

⋂
n Xn) > 0.)
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